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We investigate a three-component reaction-diffusion system that describes the interaction of one activator
and two inhibitors where one inhibitor acts as a traveling pulse generator of the activator and the other acts as
a lateral inhibition localizer. It is numerically shown that the synergistic effect of these two inhibitors on one
activator induces several spatiotemporal patterns such as destabilization and nonannihilation of traveling pulses
and the occurrence and splitting of traveling spots. By using singular perturbation procedures, the stability of
radially symmetric equilibrium solutions is discussed. Furthermore, we discuss how such dynamics are caused
under the synergistic effect of two inhibitors.
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I. INTRODUCTION

Reaction-diffusion �RD� systems have been proposed to
describe a wide range of spatiotemporal patterns arising in
physics �1–3�, chemistry �4–6�, biology �7–9�, and other ap-
plied sciences. Among such RD systems, there are some that
describe the interaction of activators and inhibitors to study
pattern formation arising in far-from-equilibrium states
�10,11�. In particular, several two-component systems with
one-activator and one-inhibitor systems have been theoreti-
cally investigated by many authors ��12–18�, for instance�.

A well-studied system for one activator u and one inhibi-
tor v is

��ut = �2�2u + f�u,v� , �1.1�

t � 0, x � Rn �n = 1,2� ,

vt = �2v + g�u,v� , �1.2�

where f�u ,v�=u�1−u��u−a�−v with 0�a�1 /2 and
g�u ,v�=�u−v with ��0, ��0, and ��0. Here, � is an
important parameter that is sufficiently small. Suppose that
f�u ,v�=0 and g�u ,v�=0 have one intersection point in the
�u , v�-plane, as shown in Fig. 1�a�. Then, the kinetics of f
and g possesses a monostable excitability mechanism. When
� is large—that is, when the diffusion rate of u is smaller
than that of v—the localization of the activator occurs due to
long-range inhibition, by which localized equilibrium solu-
tions appear �we call them standing pulses in one dimension
and standing spots in two dimensions�. As � decreases, the
standing pulse �or spot� is destabilized through Hopf bifur-
cation and the resulting pulse exhibits a breathing motion, as
shown in Fig. 2. When � is small, there no longer exist stable
standing pulses; instead, there appear stable traveling pulses
in one dimension. The feature of these traveling pulses is that
they annihilate each other when they collide, as shown in
Fig. 3. In two dimensions, there is no stable traveling spot;
instead, there appears an expanding wave that evolves into
either an expanding ring or a pair of spirals, as shown in Fig.
4. When the radius of a standing spot becomes large, it is
primarily destabilized through static bifurcation with n=2

mode and the standing spot splits into two standing spots, as
shown in Fig. 5.

Let us introduce another one-activator and one-inhibitor
system

��ut = �2�2u + h�u,w� , �1.3�

t � 0, x � Rn,
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FIG. 1. One-activator and one-inhibitor RD systems. �a�
Nullclines of f =0 and g=0 in Eqs. �1.1� and �1.2� ��=0.25 and a
=0.1258�. �b� Nullclines of h=0 and g=0 in Eqs. �1.3� and �1.4�
��=1.3, �=1.0, s0=0.0, and â0=−0.4847�.
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�wt = d�2w + g�u,w� , �1.4�

where h�u ,w�=u�1−u��u−a�w�� with a�w�= 1 / 2 �1
+tanh���w−s0�+ â0��, and ��0, s0	0, and â0 are con-
stants. We note that the nullclines h�u ,w�=0 and g�u ,w�=0
have three intersection points, as shown in Fig. 1�b�. Let �
be a fixed small value. If d is small, there exist stable trav-
eling pulses that possess an annihilation property on colli-
sion, as shown in Fig. 6�a�. On the other hand, if d is large,
there exists no traveling pulse solution but a stable localized
equilibrium solution �Fig. 6�b��. It is obvious that Eq. �1.1�
with v=0 and Eq. �1.3� with w=0 reduce to the following
scalar bistable RD system for u:

��ut = �2�2u + u�1 − u��u − a�; �1.5�

this has been investigated in detail previously �Ref. �19�, for
instance�. One thus finds that the two systems �1.1� and �1.2�
and �1.3� and �1.4� are qualitatively similar.

To the best of our knowledge, there have only been sev-
eral theoretical works on multicomponent RD systems. As a
three-component system with two activators and one inhibi-
tor, Ikeda and Mimura �20� proposed a population model
system for two competing prey species and one predator spe-
cies, where a prey and its predator species correspond to an
activator and inhibitor, respectively. By using the interfacial
dynamics procedure, it is shown that the system exhibits sev-
eral types of spatial and/or temporal patterns, although a
two-competing species system never exhibits spatiotemporal
patterns in the absence of a predator. On the other hand,
several groups have recently discussed one-activator and
two-inhibitors systems �21–26�. Purwins and co-workers
�23,25,26� have introduced a second inhibitor into the usual
one-activator and one-inhibitor RD system �1.1� and �1.2�,
and they have numerically shown that new pulse and spot
dynamics occur in the three-component system. However,

they have not theoretically explained the roles of the second
inhibitor and the mechanism of these phenomena.

In this paper, we describe analytical and complementary
numerical studies of the synergistic effect of two inhibitors
on the occurrence of new pulse and spot behaviors. For this
purpose, we propose the following three-component RD sys-
tem with one activator u and two inhibitors v and w:

��ut = �2�2u + H�u − a�w�� − u − v , �1.6�

vt = �2v + �u − v, t � 0, x � Rn, �1.7�

�wt = d�2w + u + v − w − s0, �1.8�

with

a�w� =
1

2
�1 + tanh��w + â0�� , �1.9�

where �, �, �, �, �, s0, and d are all positive constants and
H�z� is the step function satisfying H�z�=0 for z�0 and
H�z�=1 for z�0. We note that the piecewise linear function
H�u−a�−u is qualitatively similar to the cubic one u�1
−u��u−a� for any constant a satisfying 0�a�1. In our
computations of Eqs. �1.6�–�1.9�, we assume �=3.0, â0
=−0.4847 such that 1 / 2 �1+tanh�â0��=a0=0.275, and we
consider �, �, d, and s0 as free parameters.

FIG. 2. A standing pulse with breathing motion in Eqs. �1.1� and
�1.2� ��=0.125, �=0.25, a=0.1258, and �=0.3308�.
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FIG. 3. Annihilation of two traveling pulses in Eqs. �1.1� and
�1.2� ��=0.125, �=0.25, a=0.1258, and �=0.12�.
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FIG. 4. An expanding wave in u component in Eqs. �1.1� and
�1.2� ��=0.125, �=0.25, a=0.1258, and �=0.05�. �a� t=0.1. �b� t
=0.4.
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We note the following observations with regard to the
above system. In the absence of w, the first two equations
�1.6� and �1.7� reduce to a system similar to �1.1� and �1.2�,
while in the absence of v, the first and third equations �1.6�
and �1.8� reduce to �1.3� and �1.4�. In order to consider the
synergistic effect of two inhibitors, we assume a situation
where d is large and � and � are small. This indicates that the
first inhibitor v acts as a traveling pulse generator and the
second one w acts as a lateral inhibition localizer for the
activator u. Second, a three-component RD system with one
activator and two inhibitors is proposed as an extension of a
phenomenological model of the planar dc gas-discharge sys-
tem with semiconductor electrode �22,26,27�. In these sys-
tems, a cubic nonlinear term is applied for the activator. For
mathematical tractability, the cubic nonlinearity is replaced
by a piecewise linear function in Eq. �1.6�.

We first briefly mention the dynamics of solutions to the
ordinary differential equations �ODEs� corresponding to the
system �1.6�–�1.9�. It is obvious that there exists an equilib-
rium solution �u0 ,v0 ,w0�= �0,0 ,−s0� for any s0. In addition,
if s0�s0

�= �2�+2â0+ln �� /2�, there exists another solution
�u1 ,v1 ,w1�= � 1 / �+1 , � / �+1 ,1−s0�. Both these solutions are
locally stable. In this research, we restrict s0 to satisfy s0
�s0

�. When � and � are both small, we find that the ODEs of
�1.6�–�1.9� are a monostable system with an excitable prop-
erty, as shown in Fig. 7.

We present some numerical evidences of pulse and spot
dynamics arising in the system �1.6�–�1.9�.

A. Nonannihilation of traveling pulses

For s0, �, �, d, and � in a suitable parameter regime, there
exist stable traveling pulse solutions of Eqs. �1.6�–�1.9�. The
relations among the speed, pulse width, and � are analyti-

10.0

0.0

0.0 10.0

10.0

0.0

0.0 10.0

(b)

(a)

FIG. 5. Static destabilization with n=2 mode of a standing spot
in Eqs. �1.1� and �1.2� ��=0.125, �=0.25, a=0.1258, and �=0.02�.
�a� t=0.01. �b� t=0.1.

12.0

0.0

0.0 100.0

-1

0

1

2

0 10 20 30 40 50

(b)

(a)

FIG. 6. Annihilation of two traveling pulses and a standing
pulse in Eqs. �1.3� and �1.4�. The solid and dashed curves, respec-
tively, represent u and w ��=0.125, �=1.3, �=1.0, s0=0.0, â0

=−0.4847, and �=0.1�. �a� Annihilation of traveling pulses �d
=1.0 and �=1.0�. �b� A standing pulse �d=10.0 and �=0.01�.

FIG. 7. Excitability of solutions to ODEs corresponding to Eqs.
�1.6�–�1.9� ��=0.125, �=0.01, �=0.05, �=5.0, and s0=0.3�. Trajec-
tory from the initial conditions (u�0� ,v�0� ,w�0�)= �0.05,0 ,−s0�.
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cally determined in the limit �↓0, as shown in Fig. 8. When
we choose a suitably small value of �, we find that the speed
and profiles of u and v for the case ��0 are almost similar
to those for �=0 �that is, the two-component system �1.6�
and �1.7� with a=a0�, as shown in Figs. 9�a� and 9�b�. It
appears that there is no contribution of w to the occurrence of
traveling pulses. The existence and stability of traveling
pulse solutions are discussed in Sec. IV.

Consider the situation where two traveling pulses ap-
proach each other. If � is very small, they propagate so fast
that they merge and disappear �Fig. 10�a��. However, if �
increases slightly, they collide elastically �Fig. 10�b��. Here,
we should note that under the same values of parameters
except for �=0, the annihilation of traveling pulses occurs
on collision �Fig. 10�c��. This clearly indicates that the sec-
ond inhibitor w plays a role in the nonannihilation property.
If � still increases, they propagate slowly and gradually stop
under a repulsive force �Fig. 10�d��. Unlike the one-activator
and one-inhibitor RD system, the second inhibitor w induces
a long-range interaction between the two pulses so that they
form a stable bound state by numerical simulations.

Integrating the above, we conclude that the second inhibi-
tor w does not exert so much influence on a single traveling
pulse if it is far away from the others. However, when two
traveling pulses approach closely, since the characteristic
time � is very small and the diffusion rate d is very large, the
concentration of w in the interval between the two pulses

increases so rapidly that there a braking effect occurs on
traveling pulses, even if it is too far to increase the concen-
tration of v. If the speed is so fast that it overcomes the
braking effect, pair annihilation of the two traveling pulses
occurs. We note that the nonannihilation of traveling pulses
has already been reported in some two-component RD sys-
tems such as the Gray-Scott model �11,28,29� and FitzHugh-
Nagumo system �30�. The key point for this type of nonan-
nihilation property is that the speed is very slow �31,32�. On
the other hand, for our three-component RD system, when
very slowly traveling pulses approach each other, they gradu-
ally stop. If the speed is slightly faster, they reflect each
other. From the above, we deduce that it is necessary for the
nonannihilation property that the speed is sufficiently fast in
order to overcome the repulsive force caused by the second
inhibitor.

B. Traveling spots

As stated previously, when � is small, no traveling spot
exists, as shown in Fig. 4. However, if � is suitably large,
there exists a stable moving spot, as shown in Fig. 11�a�,
which propagates with constant shape and speed. We call this
a traveling spot. The appearance of traveling spots in our
system is intuitively explained as follows: Suppose that there
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FIG. 8. Dependences of speed on � and pulse width of traveling
pulses of Eqs. �1.6�–�1.9� in the limit �↓0. The solid and dashed
curves, respectively, represent the cases of �=0.0 and �=3.0 �d
=10.0, �=0.01, and s0=0.34�. �a� Dependence on �. �b� Depen-
dence on pulse width.
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FIG. 9. Traveling pulses of Eqs. �1.6�–�1.9�. The solid, dashed,
and dash-dotted curves, respectively, represent u, v, and w ��
=0.125, d=10.0, �=0.01, �=0.04, and s0=0.34�. �a� �=0.0. �b� �
=3.0.
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is an expanding spot that moves to one direction. As � is
small and d is large, w is rapidly generated within a spot and
it diffuses to cover over the interface. This long-range inhi-
bition effect suppresses the expansion of spots, leading to the
occurrence of a traveling spot. If � is too large, the inhibition
effect warps the interface so that a single traveling spot splits
into many spots, as shown in Fig. 11�b�. One could thus
expect that the occurrence of traveling spots and splitting
into many spots are due to the synergistic effect of two dif-
ferent inhibitors on one activator.

C. Transversal destabilization of traveling pulses

In Sec. I A, we demonstrated the existence of stable trav-
eling pulses. Here, we consider the transversal stability of
traveling pulses in the channel domain 
L= ��x
= �x ,y��R2�x�R , 0�y�L� with width L, where the
boundary conditions at y=0,L are imposed as

�u

�y
=

�v
�y

=
�w

�y
= 0, t � 0, x � R . �1.10�

When � is small, there exist traveling pulses for small �. It is
shown that these are transversally stable, as shown in Fig.

12�a�. On the other hand, when � is suitably large, there
continues to exist a traveling pulse. However, this is trans-
versally unstable due to the lateral inhibition of w, as shown
in Fig. 12�b�.

In the following sections, we discuss how these pulse and
spot dynamics arising in Eqs. �1.6�–�1.9� occur under the
synergistic effect of two different types of inhibitors on one
activator.

II. EQUATIONS OF MOTION OF THE INTERFACE

As � tends to zero, internal layers arising in the u compo-
nent of Eqs. �1.6�–�1.9� become interfaces. In order to treat
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FIG. 10. Interaction of two traveling pulses ��=0.125, d=10.0,
�=0.01, s0=0.34, and �=3.0�. �a� Pair annihilation ��=0.01�. �b�
Elastic collision ��=0.04�. �c� Pair annihilation ��=0 and �=0.04�.
�d� Two standing pulses in a bound state ��=0.26�.
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FIG. 11. A traveling spot and multispots. The domain size is
20�20 ��=0.125, d=10.0, �=0.01, s0=0.03, and �=0.04�. �a� A
traveling spot �=10.0. �a-i� u. �a-ii� v. �a-iii� w. �b� Splitting of a
single traveling spot into many spots ��=60.0�.
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the dynamics of the patterns in Eqs. �1.6�–�1.9�, we derive an
evolutional equation of interfaces that is controlled by two
inhibitors v and w.

Suppose that an interfacial curve—say, ��t�—is simply a
single closed curve given in the entire plane R2, in such a
way that R2=
1�t����t��
0�t�, where 
1�t�= ���x , t��R2

�R+
0�u�x , t�−a(w�x , t�)�0� and 
0�t�= ���x , t��R2

�R+
0�u�x , t�−a(w�x , t�)�0�. Then, the time evolution of ��t�

is described by

��d��t�
dt

· 
	 = C„vi;a�wi�… − ��, �x,t� � ��t� , �2.1�

where � is the curvature on ��t�, 
 is the outward normal
vector on the interface ��t�, and vi and wi are the values of v
and w on ��t�, respectively. When v and w are assumed to be
constant, C(v ;a�w�) is the velocity of the traveling front so-
lution of the following scalar bistable RD equation for u:

ut = uxx + H�u − a�w�� − u − v, t � 0, x � R �2.2�

with the boundary conditions

u�− �,t� = 1 − v and u�+ �,t� = − v . �2.3�

The velocity C(v ;a�w�) is explicitly represented as

C�v;a�w�� =
2� 1

2 − v − a�w��
��v + a�w���1 − v − a�w���1/2 . �2.4�

For the derivation of Eq. �2.1�, the reader should refer to Ref.
�12�. By using Eqs. �1.7� and �1.8�, the equations of v and w
in the limit of �↓0 are, respectively, given as

vt = �2v − �� + 1�v + �, t � 0, x � 
1�t� ,

vt = �2v − �� + 1�v, t � 0, x � 
0�t� , �2.5�

with the boundary conditions

v„��t� − 0,t… = v„��t� + 0,t… ,

d

d

v„��t� − 0,t… =

d

d

v„��t� + 0,t…, t � 0,

lim
�x�→�

v�x,t� = 0, �2.6�

and

�wt = d�2w + 1 − w − s0, t � 0, x � 
1�t� ,

�wt = d�2w − w − s0, t � 0, x � 
0�t� , �2.7�

with the boundary conditions

w„��t� − 0,t… = w„��t� + 0,t… ,

d

d

w„��t� − 0,t… =

d

d

w„��t� + 0,t…, t � 0,
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FIG. 12. Transversal stability of traveling pulses ��=0.125, d
=10.0, �=0.01, s0=0.2, �=0.04, and L=25�. �a� �=0.0. �a-i� t
=0.0. �a-ii� t=0.2. �b� �=10.0. �b-i� t=0.0. �b-ii� t=0.2.
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lim
�x�→�

w�x,t� = − s0. �2.8�

Thus, we obtain the interface problem �2.1�–�2.8� for
(��t� ,v�x , t� ,w�x , t�), taking the limit �↓0 in Eqs.
�1.6�–�1.8�.

III. RADIALLY SYMMETRIC EQUILIBRIUM SOLUTIONS

We numerically find that traveling pulse solutions in one
dimension and traveling spot solutions in two dimensions are
bifurcated from the radially symmetric equilibrium ones.
When d is large, we first show the existence of radially sym-
metric equilibrium solutions (�0 , v̄�r� , w̄�r�) with r= �x� of
Eqs. �2.1�–�2.8�, where r=�0 is the equilibrium interface po-
sition �Fig. 13�, depending on the parameters s0 and �.

Consider the stationary problem of Eqs. �2.1�–�2.8�.
Equation �2.1� with Eq. �2.4� immediately leads to

1

2
− v̄i − a�w̄i� = 0, �3.1�

where v̄i= v̄��0� and w̄i= w̄��0� so that Eq. �1.9� is

ai =
1

2
�1 + tanh��w̄i + â0�� �3.2�

and the relation among �, �0, v̄i, and w̄i is given by

� =

− â0 −
1

2
ln� 2v̄i + 1

− 2v̄i + 1
	

w̄i

. �3.3�

The stationary problems corresponding to Eqs. �2.5�–�2.8�
are given as

0 = vrr +
n − 1

r
vr − �� + 1�v + �, 0 � r � �0,

0 = vrr +
n − 1

r
vr − �� + 1�v, �0 � r � � , �3.4�

with the boundary conditions

dv
dr

�0� = 0,

v��0� = v̄i,

dv
dr

��0 − 0� =
dv
dr

��0 + 0� ,

lim
r→�

v�r� = 0, �3.5�

and

0 = dwrr +
n − 1

r
wr + 1 − w − s0, 0 � r � �0,

0 = dwrr +
n − 1

r
wr − w − s0, �0 � r � � , �3.6�

with

dw

dr
�0� = 0,

w��0� = w̄i,

dw

dr
��0 − 0� =

dw

dr
��0 + 0� ,

lim
r→�

w�r� = − s0. �3.7�

Then, for fixed �0, (v̄�r� , w̄�r�) of Eqs. �3.4�–�3.7� are given
as follows.
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FIG. 13. Standing pulse and standing spot. �a� A standing pulse.
The solid, dashed, and dash-dotted curves, respectively, represent u,
v, and w ��=0.125, d=10.0, �=0.01, s0=0.2, �=10.0, and �=0.8�.
�b� A standing spot. The domain size is 20�20 ��=0.125, d=10.0,
�=0.01, s0=0.03, �=10.0, and �=0.8�. �b-i� u. �b-ii� v. �b-iii� w.

SYNERGISTIC EFFECT OF TWO INHIBITORS ON ONE … PHYSICAL REVIEW E 77, 046201 �2008�

046201-7



�i� One dimension �n=1�:

v̄�r� = 
�
�

� + 1
	 − � �

� + 1
	e−�1+��0 cosh��1 + �r� , 0 � r � �0,

� �

� + 1
	sinh��1 + ��0�e−�1+�r, �0 � r � � ,� �3.8�

and

w̄�r� = 
1 − s0 − e−�0/�d cosh� r
�d

	 , 0 � r � �0,

− s0 + sinh� �0

�d
	e−r/�d, �0 � r � � .� �3.9�

�ii� Two dimensions �n=2�:

v̄�r� = 
�
�

� + 1
	 −

��0

�� + 1
K1��� + 1�0�I0��� + 1r� , 0 � r � �0,

��0

�� + 1
I1��� + 1�0�K0��� + 1r� , �0 � r � � ,� �3.10�

and

w̄�r� = 
− K1��0/�d���0/�d�I0�r/�d� + �1 − s0� , 0 � r � �0,

I1��0/�d���0/�d�K0�r/�d� − s0, �0 � r � � ,
� �3.11�

where In and Kn are the modified Bessel functions.
By substituting v̄i= v̄��0� of Eq. �3.4� and w̄i= w̄��0� of

Eq. �3.6� into Eq. �3.3�, the value of �0 is determined. We
thus obtain the solution (�0 , v̄�r� , w̄�r�) of Eqs.
�2.1�–�2.8�. For the one-dimensional problem, the relation
between � and �0 for suitably fixed s0 and d is shown in Fig.
14. The situation is classified into two cases depending on
the values of s0. For small s0 ��0.5�, there are two critical
values of �0—say, �̄0 and �0

�—such that lim�↓0 �0= �̄0 and
lim�↑� �0=�0

�. These are given by the zeros of the numerator
and the denominator of Eq. �3.3�; namely, �̄0 is given by
1 / 2 −vi��̄0�−a0=0 and �0

�= −�d / 2 ln�1−2s0�, respectively
�Figs. 14�a� and 14�b��. However, for large s0 ��0.5�, �0
=� as � tends to ��=lim�0↑� �= �2â0+ln�2�+1�� / �2s0−1�
�Fig. 14�c��.

Similarly, the existence of standing spot solutions can
be shown, as displayed in Fig. 15. The dependence of
�0 on � and s0 is qualitatively similar to the one-
dimensional problem; �0

� is replaced by the root of
��0 /�d�I1��0 /�d�K0��0 /�d�−s0=0.

IV. STABILITY OF RADIALLY SYMMETRIC
EQUILIBRIUM SOLUTIONS

In this section, we discuss the stability of the radially
symmetric equilibrium solutions (�0 , v̄�r� , w̄�r�) obtained
in the previous section. In order to do so, we study the dis-
tribution of the eigenvalues of the linearized equations
�2.1�–�2.8� around (�0 , v̄�r� , w̄�r�), following the proce-

dure used in Ref. �12�. Since the derivation of the stability
formula is similar to the one in Ref. �33�, we only show its
final formula and some stability results.

A. One-dimensional problem

For a suitably large d, we take �, �, and � as free param-
eters. The exponential growth of perturbations to the stand-
ing pulse solution (�0 , v̄�x� , w̄�x�), which is symmetric at
x=0, is determined by the roots of the following equation:

F��z;d,�,�,�� � − z −
4

�
� − �

2�1 + �
�1 − e−2�1+��0�

+
�

2�1 + � + z
�1 � e−2�1+�+z�0�

+ � �a

�w	0

 − 1

2�d
�1 − e−2�0/�d�

+
1

2�d�1 + �z�
�1 � e−2��1+�z�/d�0��� = 0,

�4.1�

with

� �a

�w
	

0
=

�

2

1

cosh2��w̄i + a0�
, �4.2�

where �0 is obtained by the function �=���0�, as shown in
Fig. 14. We simply write F��z ;d ,� ,� ,�� as F��z�, where
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F+�z� and F−�z� correspond to the cases of symmetric and
antisymmetric perturbations, respectively. It is obvious that
F−�0�=0 holds for any ��0; this implies the translational
invariance. If F−�z�=0 is doubly degenerated at z=0, that is,

F−�0� =
dF−�0�

dz
= 0, �4.3�

it implies the occurrence of translational instability. Equation
�4.1� with Eq. �4.3� gives the following relation between �
and �:

� = �t��;�� = −
2�

�1 + ��3/2
−
�1 − e−2�1+��0�

2

+ �1 + ��1/2�0e−2�1+��0�
− 2� �

d
	� �a

�w
	

0

− 1

2
�d�1 − e−2�0/�d� + �0e−2�0/�d� .

�4.4�

The above equation suggests that �t�� ;�� is determined by
the first term when � is small and d is large in the present
case.

On the other hand, if F+�z�=0 has a pair of pure imagi-
nary solutions �ki for some real k, it gives the relation be-

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1

0

2

4

6

0 5 10 15

(b)

(a)

(c)

FIG. 14. �-�0 relation of standing pulses of Eq. �3.3� �d
=10.0�. �a� s0 is small �s0=0.03�. �b� s0 is large �s0=0.2�. �c� s0 is
extremely large �s0=0.6�.

0

20

40

0.4 0.6 0.8

0

20

40

0.4 0.6 0.8 1

0

0.2

0.4

0.6

0 5 10 15 20

(b)

(a)

(c)

FIG. 15. �-�0 relation of standing spots of Eq. �3.3� �d=10.0�.
�a� s0 is small �s0=0.03�. �b� s0 is large �s0=0.06�. �c� s0 is ex-
tremely large �s0=1.5�.
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tween � and �—say, �=�o�� ;��. It implies the occurrence
of oscillatory instability. We can now draw the bifurcation
diagram on the stability of (�0 , v̄�x� , w̄�x�) in the
�� ,��-plane for different values of �, as shown in Fig. 16. As
�t�� ;�� depends weakly on �, �t�� ;�� is drawn for �=0.01.
We note that for small �, the bifurcation curves �t�� ;�� and
�o�� ;�� intersect at one point in the �� ,��-plane, while for
large �, �o�� ;�� is above �t�� ;�� for any �. This diagram
indicates the following properties: let � be small. When � is
small, the standing pulse is stable for large �, while as �
decreases, it is primarily destabilized through oscillatory bi-
furcation. However, when � is large, as � decreases, the
standing pulse is primarily destabilized through translational
bifurcation. On the other hand, let � be large. The standing
pulse is always destabilized through oscillatory bifurcation
as � decreases.

B. Traveling pulse solution

In the previous subsection, for suitable s0, �, d, and �, the
occurrence of translational bifurcation suggests the appear-
ance of the traveling pulses of Eqs. �1.6�–�1.9�. A traveling
pulse of the limiting problem derived from Eqs. �2.1�–�2.8�
is of the form (z+−z− ,v0�z� ,w0�z�) with z=x−ct, where c is
the traveling speed and z� �z+�z−� are the positions of the
interfaces. Then, Eqs. �2.5� and �2.6� become

0 = vzz + cvz + ��H�z − z−�H�− z + z+� − v� − v , �4.5�

with boundary conditions

v�z = z� − 0� = v�z = z� + 0� ,

vz�z = z� − 0� = vz�z = z� + 0� ,

lim
�z�→�

v�z� = 0, �4.6�

and Eqs. �2.7� and �2.8� become

0 = dwzz + �cwz + H�z − z−�H�− z + z+� − w − s0, �4.7�

with boundary conditions

w�z = z� − 0� = w�z = z� + 0� ,

wz�z = z� − 0� = wz�z = z� + 0� ,

lim
�z�→�

w�z� = − s0. �4.8�

The solution (u0�z� ,v0�z� ,w0�z�) of Eqs. �4.5�–�4.8� is given
as follows:

u0�z� = 
− C1e�v
+z, − � � z � z−,

− C2e�v
−z − C3e�v

+z +
1

� + 1
, z− � z � z+,

− C4e�v
−z, z+ � z � � ,

�
�4.9�

v0�z� = 
C1e�v
+z, − � � z � z−,

C2e�v
−z + C3e�v

+z +
�

� + 1
, z− � z � z+,

C4e�v
−z, z+ � z � � ,

�
�4.10�

and

w0�z� = 
D1e�w
+z − s0, − � � z � z−,

D2e�w
−z + D3e�w

+z + 1 − s0, z− � z � z+,

D4e�w
−z − s0, z+ � z � � .

�
�4.11�

Here, �v,� and �w,� are, respectively,

�v
� =

1

2
�− c � �c2 + 4�� + 1�� ,

�w
� =

1

2d
�− �c � ���c�2 + 4d� , �4.12�

and the coefficients Ci and Di �i=1,2 ,3 ,4� are given as fol-
lows:

C1 = � �

� + 1
	� �v

−

�v
+ − �v

−	�e−�v
+z+ − e−�v

+z−� ,

0
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FIG. 16. Bifurcation diagram obtained by the linear stability
analysis of the standing pulses to the interface equations �2.1�–�2.8�.
The solid and dashed curves, respectively, represent �=�t�� ;�� and
�=�o�� ;��. For �t�� ;��, the case �=0.01 is shown �d=10.0�. �a� s0

is small �s0=0.03�. �b� s0 is large �s0=0.2�.
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C2 = − � �

� + 1
	� �v

+

�v
+ − �v

−	e−�v
−z−,

C3 = � �

� + 1
	� �v

−

�v
+ − �v

−	e−�v
+z+,

C4 = � �

� + 1
	� �v

+

�v
+ − �v

−	�e−�v
−z+ − e−�v

−z−� , �4.13�

and

D1 = � �w
−

�w
+ − �w

− 	�e−�w
+z+ − e−�w

+z−� ,

D2 = − � �w
+

�w
+ − �w

− 	e−�w
−z−,

D3 = � �w
−

�w
+ − �w

− 	e−�w
+z+,

D4 = � �w
+

�w
+ − �w

− 	�e−�w
−z+ − e−�w

−z−� . �4.14�

Using Eq. �2.1�, the set �� ,c ,z+−z−� can be determined by
the condition

− �d��t�
dt

· 
	
z=z−

= �d��t�
dt

· 
	
z=z+

= c . �4.15�

The dependences of speed c on � and pulse width l= �z+
−z−� have already been shown in Fig. 8. We thus find that
traveling pulse solutions bifurcate from the standing ones as
� decreases. Here, we make two observations: �i� the bifur-
cation is subcritical for the case �=0, while it is supercritical
for large �, and �ii� as the speed c increases, �v

+ becomes
small, while �v

−�−c, so that v�z−� remains to take a certain
value, while v�z+� becomes vanishingly small. This implies
that the profile of v is asymmetric around the center of the
pulse for large c. On the contrary, even if c is large, when �
is small and d is large, we know �w

+ �−�w
− =1 /�d, so that

w�z+� and w�z−� are almost the same. This indicates that the
profile of w is rather symmetric around the center of the
pulse.

C. Two-dimensional problem

Next, we discuss the stability of the standing spot solu-
tions (�0 , v̄�r� , w̄�r�). Suppose that small perturbations
with 2� / n periodic deformations of the radial direction �n
=0,1 ,2 , . . .� are introduced into them. Then, the stability for-
mula corresponding to Eq. �4.1� is given by

Fn�z;d,�,�,�� = − �z +
�

�0
2 �1 − n2� + �v − �̂n

�v��z�

+ �w − �̂n
�w��z� , �4.16�

with

�v = 4�0�I1��1 + ��0�K1��1 + ��0� , �4.17�

�̂n
�v��z� = 4�0�In��1 + � + z�0�Kn��1 + � + z�0� ,

�4.18�

�w = 4� �a

�w
	

0
��0

d
	I1��0/�d�K1��0/�d� , �4.19�

and

�̂n
�w��z� = 4� �a

�w
	

0
��0

d
	In��1 + �z

d
�0	Kn��1 + �z

d
�0	 ,

�4.20�

where In and Kn are the modified Bessel functions. It is ob-
vious that F1�0�=0 for any ��0, which corresponds to the
translational invariance. In a manner similar to the one-
dimensional case, we consider the situation where F1�z� is
doubly degenerated at z=0—that is,

F1�0� =
dF1�0�

dz
= 0, �4.21�

giving the relation between � and � as

� = �1,t��;�� = −
��0

2

�1 + �
�K1��1 + ��0��I0��1 + ��0�

+ I2��1 + ��0�� − I1��1 + ��0��K0��1 + ��0�

+ K2��1 + ��0��� − � �a

�w
	

0

�0
2�

d3/2 �K1��0/�d��I0��0/�d�

+ I2��0/�d�� − I1��0/�d��K0��0/�d� + K2��0/�d��� .

�4.22�

Similar to �t�� ;�� in the one-dimensional case, �1,t�� ;��
depends weakly on the second term as long as d is large and
� is small in the present case. The static bifurcation �
=�n,s�� ;�� �n=2,3 , . . .� and the oscillatory one �
=�0,o�� ;�� are obtained, respectively, by Fn�0�=0 and
F0�ik�=0 for some real k. The bifurcation diagram of the
standing spot solution is shown in the �� ,��-plane in Fig. 17.
As �1,t�� ;�� and �2,s�� ;�� depend weakly on �, �1,t�� ;��
and �2,s�� ;�� are drawn for �=0.01. Regardless of s0, when
� is increased over the critical value �2,s, the standing spot
solution is primarily destabilized through the static bifurca-
tion with n=2 mode.

First, we consider the case where s0 is small, as shown in
Fig. 17�a�. In the region ���2,s, when � is small, the stand-
ing spot solution is primarily destabilized through oscillatory
bifurcation for any value of �. However, when � is large and
� is small, the standing spot solution is primarily destabilized
through the translational bifurcation. This implies that the
second inhibitor suppresses the oscillatory bifurcation and
enhances the translational motion of the spot. As shown in
Fig. 11�a�, when � and � are small and d is large, taking
suitable �, traveling spots appear as a result of the synergis-
tic effect of two inhibitors on one activator. If � is suffi-
ciently large satisfying �	�2,s, the bifurcation diagram sug-
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gests that the standing spot solution is primarily destabilized
through the static bifurcation with n=2 mode and there is no
traveling spot solution. We can see by the numerical simula-
tion that a single spot splits into many spots, as shown in Fig.
11�b�.

In contrast, for a larger value of s0, we note that �2,s is
smaller than that for the case of a small value of s0 �Fig.
17�b��. For ���s,2, the bifurcation curve �=�0,o�� ;�� is
higher than �=�1,t�� ;�� for any value of �. Then, the stand-
ing spot is destabilized through the oscillatory bifurcation by
decreasing �. However, for large � satisfying �	�2,s, the
standing spot solution is destabilized through the static bifur-
cation with n=2 mode. Thus, for a larger value of s0, the
lateral inhibition by the second inhibitor does not yield a
traveling spot solution, but causes the splitting of a standing
spot.

V. REDUCED SYSTEMS OF THE THREE-COMPONENT
RD SYSTEM

We first consider the limits �→0 and d→�. In this case,
w is a time-dependent but spatially independent variable,
given by

w�t� =
1

�
��Rn
�u + v�dx − s0 = �
1�t�� − s0, �5.1�

where the spatial coordinate is rescaled to absorb �
� in the
integration and �
1�t�� is a measure of 
1�t�. Then, the three-
component RD system �1.6�–�1.8� with Eq. �1.9� is reduced
to a two-component RD system with a global inhibitory cou-
pling term:

��ut = �2�2u + H�u − a�t�� − u − v , �5.2�

t � 0, x � Rn,

vt = �2v + �u − v , �5.3�

where a�t� is given as

a�t� =
1

2
„1 + tanh����
1�t�� − s0� + â0�… . �5.4�

Systems similar to the one given above have been studied in
Refs. �33,34�. The variation of �
1�t�� is considered in these
systems as a global feedback. Furthermore, we consider the
limit �→�. For this case, a�t� changes under a constraint

�
1�t�� = s0. �5.5�

That is, an area enclosed by an interface ��t� is conserved.
Thus, in the limits �→0, d→�, and �→�, the three-
component RD system �1.6�–�1.8� with Eq. �1.9� is reduced
to a two-component RD system with area conservation.

We consider the system �5.2� and �5.3�, where a�t� is de-
termined under the constraint �5.5�. In this limiting case, the
radius of the core is given as �0=�0

�. The stability of the
solution (�0

� , v̄�r� , w̄�r�) is obtained in the same manner as
that in the previous section. Here, we choose s0 and � as free
parameters. Under the constraint �5.5�, the oscillatory bifur-

cation is completely suppressed for one- and two-
dimensional solutions. In one dimension, as � decreases, the
standing pulse is destabilized through translational bifurca-
tion �Fig. 18�a��. On the other hand, in two dimensions, there
is one critical s0

�. When s0�s0
�, the standing spot is primarily

destabilized through the translational bifurcation with de-
creasing �. However, when s0	s0

�, the standing spot is de-
stabilized through the static bifurcation with n=2 mode.
Thus, in this limiting case, the traveling spots exist for s0
�s0

�.

VI. TRANSVERSAL STABILITY OF TRAVELING PULSE
SOLUTIONS

As shown in Sec. I C, we observe that planar traveling
pulse solutions of Eqs. �1.6�–�1.9� with small � and large d
are transversally destabilized when � is large. We discuss the
stability of these solutions by using the singular perturbation
method.

Let us consider planar traveling pulse solutions
(u�z� ,v�z� ,w�z�) �z=x−ct� in a domain 

= ���z ,y��R2�z�R , y�R�. These are equilibrium solutions
of the following system:

��ut = �2�uzz + uyy� + ��cuz + H�u − a�w�� − u − v ,

�6.1�
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FIG. 17. Bifurcation diagram obtained by the linear stability
analysis of the standing spots to the interface equations �2.1�–�2.8�.
The solid, dashed, and dash-dotted curves, respectively, represent
�=�1,t�� ;��, �=�0,o�� ;��, and �=�2,s�� ;��. For �1,t�� ;�� and
�2,s�� ;��, the case �=0.01 is shown. The mark U in the figures
denotes the unstable region of the static bifurcation with n=2 mode
�d=10.0�. �a� s0 is small �s0=0.03�. �b� s0 is large �s0=0.06�.
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vt = �vzz + vyy� + cvz + �u − v, t � 0, �z,y� � 
 ,

�6.2�

�wt = d�wzz + wyy� + �cwz + u + v − w − s0, �6.3�

with

a�w� =
1

2
�1 + tanh��w + â0�� . �6.4�

The boundary conditions are

lim
�z�→�

�u,v,w� = �0,0,− s0� �6.5�

and

lim
�y�→�

� �u

�y
,
�v
�y

,
�w

�y
	 = �0,0,0� . �6.6�

The detailed derivation of the stability formula is given in
the Appendix; here, we only show the final results and the
related bifurcation diagrams.

Assuming suitable s0, d, �, �, and �, the exponential
growth of perturbations with wave number k is determined
by the roots of the following equation:

F�s,k� = det�A� = a11a22 − a12a21 = 0. �6.7�

Here, aij �i , j=1,2� are given as follows:

a11 = − �s − �k2 + �� �C

�v
	

0
� 1

p1
�e�v

−l − 1� +
1

2p2
�

+ � �C

�a
	

0
� �a

�w
	

0

+� 1

p3
�e�w

− l − 1� +
1

2p4
� ,

a12 = � �C

�v
	

0

�

2
�−

1

p2
e−�p2+c/2�l�

− � �C

�a
	

0
� �a

�w
	

0

+1

2
� 1

p4
e−�p4/d+�c/2d�l� ,

a21 = � �C

�v
	

0

�

2
�−

1

p2
e−�p2−c/2�l�

− � �C

�a
	

0
� �a

�w
	

0

−1

2
� 1

p4
e−�p4/d−�c/2d�l� ,

a22 = − �s − �k2 + �� �C

�v
	

0
� 1

p1
�e−�v

+l − 1� +
1

2p2
�

+ � �C

�a
	

0
� �a

�w
	

0

−� 1

p3
�e−�w

+ l − 1� +
1

2p4
� , �6.8�

with

l = �z+ − z−� ,

p1 = �c2 + 4�� + 1� ,

p2 =�k2 +
c2

4
+ �� + 1� + s ,

p3 = ��c��2 + 4d ,

p4 =��dk�2 +
�c��2

4
+ d + �ds , �6.9�

� �C

�a
	

0
= � �C

�v
	

0
= −

1

2�
�4 + �c��2�3/2, �6.10�

and

� �a

�w
	

0

�

=
�

2

1

cosh2��w�z = z�� + â0�
. �6.11�

It is obvious that F�0,0�=0; this corresponds to the transla-
tional invariant mode. The bifurcation threshold is deter-
mined by substituting s=0 in Eq. �6.7�. When �=0, there is
no other solution, suggesting that the traveling pulse solution
is transversally stable for perturbations. On the other hand,
for ��0, there are other branches, as shown in Figs. 19�a�
and 19�b�, depending on �. For the limit �↓0, we observe
that there are two branches that diverge as ��−1/2 and an-
other branch is independent of �. The bifurcation diagrams
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FIG. 18. Bifurcation diagram obtained by the linear stability
analysis of the standing pulses and spots to the interface equations
�2.1�–�2.8� in the limits �→0, d→�, and �→�. The mark U in the
figure denotes the unstable region of the static bifurcation with n
=2 mode. �a� One-dimensional case. The solid line represents
�t�s0�. �b� Two-dimensional case. The solid and dash-dotted curves,
respectively, represent �=�1,t�s0� and �=�2,s�s0�.
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suggest that when d is large and � is small, the traveling
pulse solution is transversally destabilized through the lateral
inhibition of w as � increases.

Let us consider the system in the channel domain 
L
= ��x= �x ,y��R2�x�R , 0�y�L� with the Neumann
boundary conditions on y=0 and y=L. Taking k=�n /L with
integer n, the above bifurcation diagrams indicate that the
traveling pulses are transversally unstable in the limit �↓0.
On the other hand, for finite �, the traveling pulses are un-
stable if the system size L is sufficiently large to include
components of a destabilizing wave number.

VII. CONCLUDING REMARKS

We have studied a three-component RD system with one
activator and two inhibitors. The main advantage of our sys-
tem is the mathematical tractability. It results from the re-
placement of the common cubic nonlinearity by a piecewise
linear function in Eq. �1.6�. Traveling spots have already
been reported in Refs. �23,26�, where the cubic nonlinearity
was applied. Although there is no qualitative difference in
the phenomenon, the stability analysis of the standing pulse
�spot� solution by the singular perturbation procedures is dif-
ficult in them.

We have found that the synergistic effect of the slow and
short-range inhibitor v, the traveling pulse generator, and the
fast and long-range one w, the lateral inhibition localizer,
induces several remarkable phenomena in the traveling pulse

and spot dynamics of the solutions. With regard to the trav-
eling pulses, the distribution of v is asymmetric around the
center of the pulse, while that of w is almost symmetric. This
suggests that the intrinsic traveling speed depends mostly on
the difference of v between the front and back layers. How-
ever, w plays important roles in the nonannihilation of trav-
eling pulses and in the suppression of the expanding wave to
generate a traveling spot. In one dimension, the oscillatory
bifurcation is suppressed and the standing pulse bifurcates to
a traveling pulse with decreasing �. Fast traveling pulses
collide elastically under a strong repulsive force due to w. It
is shown that slow traveling pulses in two-component RD
system collide elastically; this mechanism is analyzed using
the perturbation theory under the assumption that the defor-
mation of the traveling pulse from the standing one is small
�32�. In contrast, in our three-component RD system, the
deformation on collision is large, and thus the perturbation
theory is not applicable. Fast traveling pulses collide elasti-
cally; however, slow traveling pulses cannot approach
closely and stop before collision. This is one of the remark-
able properties of our three-component RD system. In two
dimensions, w suppresses the oscillatory and the static bifur-
cation with n=2 mode, and a traveling spot bifurcates from a
standing spot with decreasing �. For a stable traveling spot,
large d and small � are necessary. It suggests that a fast and
long-range w suppresses the expansion of the spot. s0 deter-
mines the radius of the standing spot. For small s0, although
a stable traveling spot exists in some range of �, an ex-
tremely large � causes a splitting of the spot. In contrast, for
large s0, the standing spot with a large radius is destabilized
through the static bifurcation with n=2 mode with decreas-
ing �. It is understood that w causes a lateral inhibition,
leading to the splitting of the spot. Similarly, a planar trav-
eling pulse is destabilized through the lateral inhibition.

In the limits �→0, d→�, and �→�, the three-
component RD system is reduced to a two-component RD
system with area conservation. In one dimension, the oscil-
latory bifurcation is completely suppressed and a standing
pulse bifurcates to a traveling pulse with decreasing �. In
two dimensions, although there is no oscillatory bifurcation,
the traveling spot exists only for smaller s0 due to the static
bifurcation with n=2 mode. For finite �, �
1�t�� is a time-
dependent variable and our RD system is reduced to a two-
component RD system with a global inhibitory coupling
term. Similar systems have been studied, and the appearance
of the elastic and inelastic collisions of traveling spots has
been observed �33,34�. The interaction of traveling spots in a
three-component RD system has been studied in Refs.
�25,26,35�. Slow traveling spots collide elastically; however,
fast traveling spots fuse and split into two spots on collision.
For small �, large d, and finite � in our system, these inter-
esting phenomena are expected. The study of the interaction
between traveling spots is reported elsewhere.
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APPENDIX

Following the procedure used in Ref. �12�, the stability
formula F�s ,k�=0, given in Sec. VI, can be derived. We
briefly show their derivations.

Let (u0�z ,y� ,v0�z ,y� ,w0�z ,y�) be the two-dimensional
equilibrium solution of Eqs. �6.1�–�6.4�. Let ���y ,0� be
small disturbances on the stationary interface z=z� at t=0
and ���y , t� be the corresponding deviations from z=z� such
that the resulting interfaces are

z�
I �t� = z� + ��. �A1�

The equation of the interfaces is given by

�Vn = � C„vI;a�wI�… − �� , �A2�

where Vn and � are the normal component of velocity and
curvature of the interface, respectively.

We write the values of v and w on the interface as
vI

��� , t�=v(z�+���y , t� ,y) and wI
��� , t�=w(z�+���y , t� ,y),

respectively, and expand them in powers of ���y , t� up to
O���� as follows:

vI
��y,t� = v0

� + v1
��y,t� + v2

��y,t� ,

wI
��y,t� = w0

� + w1
��y,t� + w2

��y,t� , �A3�

where

v0
� = � � �

� + 1
	�v

�

p1
�1 − e��v

�l� = v̄i
�,

v1
��y,t� = �

�

p1
�e��v

�l − 1����y,t� ,

v2
��y,t� =

1

�2��2� e−iqyye−iqzz�dq

��
0

t

e−��q�2+icqz+�+1�t�dt��� �eiqzz+�+�y�,t − t��

− eiqzz−�−�y�,t − t���eiqyy�dy� �A4�

and

w0
� = �

d�w
�

p3
�1 − e��w

�l� − s0 = w̄i
�,

w1
��y,t� = �

�

p3
�e��w

�l − 1����y,t� ,

w2
��y,t� =

1

�2��2

�� e−iqyye−iqzz�dq�
0

t

e−�d�q�2/�+icqz+1/��t�

�dt�
1

�
� �eiqzz+�+�y�,t − t��

− eiqzz−�−�y�,t − t���eiqyy�dy�, �A5�

where v̄i
� and w̄i

� are the values of v0�z ,y� and w0�z ,y� on
the interfaces z=z�, respectively.

Here, we put

l = �z+ − z−� ,

p1 = �c2 + 4�� + 1� ,

p2 =�k2 +
c2

4
+ �� + 1� + s ,

p3 = ��c��2 + 4d ,

p4 =��dk�2 +
�c��2

4
+ d + �ds . �A6�

We also expand a as

a = a0
� + a1

��t� , �A7�

where a0
�= ā�= 1 / 2 �1+tanh��w̄i

�+ â0�� and a1
��t� is the de-

viation associated with the motion of interfaces, given by

a1
��t� = � �a

�w
	

0

�

�w1
� + w2

�� , �A8�

with

� �a

�w
	

0

�

=
�

2

1

cosh2��w̄i
� + â0�

. �A9�

Consequently, the equations of ���y , t� up to O���� are

�
d��

dt
= ���� �C

�v
	

0
�v1

� + v2
�� + ���� �C

�a
	

0
a1 + ��yy

� ,

�A10�

where

� �C

�v
	

0
= � �C

�v
	„v̄i

�,a�w̄i
��… =

− 1

2�
�4 + �c��2�3/2

and

� �C

�a
	

0
= � �C

�a
	„v̄i

�,a�w̄i
��… =

− 1

2�
�4 + �c��2�3/2.

�A11�

Applying the Fourier transformation

�k
��t� =� ���y,t�e+ikydy �A12�

to Eq. �A10�, we have

�
d

dt
�k

� = − �k2�k
��t� + ���� �C

�v
	

0
�ṽ1

� + ṽ2
��

+ ���� �C

�a
	

0
� �a

�w
	

0

�

�w̃1
� + w̃2

�� , �A13�

where
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ṽ1
� = �

�

p1
�e��v

�l − 1��k
��t� ,

ṽ2
� = �

�

2
�

0

t� 1

�t�
e−�k2+�+1�t��e−c2t�/4�k

��t − t��

− e−�l � ct��2/4t��k
��t − t���dt�,

w̃1
� = �

�

p3
�e��w

�l − 1��k
��t� ,

w̃2
� = �

1

2
�

0

t� 1

��dt�
e−�dk2/�+1/��t��e−�c2t�/4d�k

��t − t��

− e−�t��c � l/t��2/4d�k
��t − t���dt�. �A14�

We now apply the Laplace transformation

�̂k
��s� = �

0

�

�k
��t�e−stdt �A15�

to Eq. �A13�; we have

��s�̂k
��s� − �k

��0�� = − �k2�̂k
��s� + ���� �C

�v
	

0
�v̂1

� + v̂2
��

+ ���� �C

�a
	

0
� �a

�w
	

0

�

�ŵ1
� + ŵ2

�� ,

�A16�

where

v̂1
� = �

�

p1
�e��v

�l − 1��̂k
�,

v̂2
� = �

�

2p2
��̂k

� − e−�p2�c/2�l�̂k
�� ,

ŵ1
� = �

1

p3
�e��w

�l − 1��̂k
�,

ŵ2
� = �

1

2p4
��̂k

� − e−�p4/d��c/2d�l�̂k
�� . �A17�

We can describe Eq. �A16� in the following matrix form:

�− ��k
+�0�

− ��k
−�0� 	 = �a11 a12

a21 a22
	��̂k

+�t�

�̂k
−�t�

	 � A��̂k
+�t�

�̂k
−�t�

	 ,

�A18�

where aij�i , j=1,2� are given as

a11 = − �s − �k2 + �� �C

�v
	

0
� 1

p1
�e�v

−l − 1� +
1

2p2
�

+ � �C

�a
	

0
� �a

�w
	

0

+� 1

p3
�e�w

− l − 1� +
1

2p4
� ,

a12 = � �C

�v
	

0

�

2
�−

1

p2
e−�p2+c/2�l�

− � �C

�a
	

0
� �a

�w
	

0

+1

2
� 1

p4
e−�p4/d+�c/2d�l� ,

a21 = � �C

�v
	

0

�

2
�−

1

p2
e−�p2−c/2�l�

− � �C

�a
	

0
� �a

�w
	

0

−1

2
� 1

p4
e−�p4/d−�c/2d�l� ,

a22 = − �s − �k2 + �� �C

�v
	

0
� 1

p1
�e−�v

+l − 1� +
1

2p2
�

+ � �C

�a
	

0
� �a

�w
	

0

−� 1

p3
�e−�w

+ l − 1� +
1

2p4
� . �A19�

The solution (�̂k
+�t� , �̂k

−�t�) is formally given as

��̂k
+�t�

�̂k
−�t�

	 =
1

det�A�� a22 − a12

− a21 a11
	�− ��k

+�0�
− ��k

−�0� 	 ,

�A20�

where det�A�=a11a22−a12a21. We write F�s ,k�=det�A� in the
text. Putting F�0,k�=0, we obtain the bifurcation diagrams,
as shown in Figs. 19�a� and 19�b�.

We can derive the dependence of solutions on � for suffi-
ciently small �. Under such a situation, we know that k���
becomes very large as compared to the other terms, so that

det�A� = a11a22 − a12a21 � a11a22

� �− �k2 + �� �C

�v
	

0

 1

p1
�e�v

−l − 1� +
1

2k
�

+ � �C

�a
	

0
� �a

�w
	

0

+
 1

p3
�e�w

− l − 1� +
1

2dk
��

��− �k2 + �� �C

�v
	

0

 1

p1
�e−�v

+l − 1� +
1

2k
�

+ � �C

�a
	

0
� �a

�w
	

0

−
 1

p3
�e−�w

+ l − 1� +
1

2dk
�� = 0.

�A21�

From Eq. �A21�, we note that there are two branches, which
are k�����−1/2 in the limit �↓0.
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